# Вводный практикум

В.К. Мухин

Лабораторная работа № 020

# Определение частоты настройки звукового генератора с помощью счетчика импульсов

## Оглавление

| Вопросы для подготовки к работе                      | 3 |
|------------------------------------------------------|---|
| Георетическое введение                               |   |
| Некоторые определения                                |   |
| Элементы теории ошибок                               |   |
| Описание установки                                   |   |
| Порядок выполнения работы                            |   |
| Задание 1. Знакомство с лабораторной установкой      |   |
| Задание 2. Определение частоты звукового генератора. |   |
| Контрольные вопросы                                  |   |

### Вводный практикум

### Лабораторная работа №020

# Определение частоты настройки звукового генератора с помощью счетчика импульсов

(Статистические закономерности, возникающие при измерениях)

**Цель работы:** приобретение навыков оценки случайной погрешности измерений.

**Приборы и принадлежности:** звуковой генератор ГЗШ, электронный счетчик-секундомер ССЭШ – 2 шт., видоизмененный телеграфный ключ, набор проводов.

### Литература

- 1. Физический практикум, Механика и молекулярная физика, под ред. В.И. Ивероновой М: «Наука», 1967.
- 2. Лабораторные занятия по физике. Под ред. Л.Л. Гольдина, изд. М: «Наука», 1983.
- 3. Зайдель А. Н.. Элементарные оценки ошибок измерений. Л: «Наука», 1968.
- 4. Игольников М.Л. Руководство к лабораторной работе «Статистические закономерности, возникающие при измерениях». Ярославль: Рукопись, 1980.

### Вопросы для подготовки к работе

- 1. Что называется частотой и периодом периодически изменяющейся физической величины? Как они связаны между собой?
  - 2. Как классифицируются погрешности измерений?
  - 3. На чем основана теория случайных погрешностей?
- 4. Что является наилучшим значением измеряемой величины? Как его вычислить?
- 5. Что такое стандартная (или среднеквадратичная) погрешность? Как ее вычислить?

### Теоретическое введение

Физика — экспериментальная наука. Наблюдение, размышление и эксперимент являются составными частями ее научного метода. Отсюда следует, что умение воспроизводить физические процессы и измерять различные физические величины имеет особое значение для человека, специализирующегося в этой области науки.

### Некоторые определения

**Физическая величина** — это свойство, в качественном отношении общее для всех физических объектов, но в количественном отношении индивидуальное для каждого из них.

Нахождение значения физической величины опытным путем при помощи специальных технических средств называется **измерением**. Измерения бывают прямые и косвенные.

**Прямым измерением** называют такое измерение, при котором искомое значение величины находят непосредственно из опытных данных.

**Косвенное измерение** позволяет получить искомое значение величины на основании известной функциональной зависимости (формулы) между ней самой и величинами, найденными из прямых измерений.

Любое измерение всегда выполняется с некоторой **погрешностью** (ошибкой), которая появляется из-за несовершенства методов и средств измерений. На величину погрешности также оказывают влияние непостоянство условий наблюдения и недостаточный опыт экспериментатора. Следовательно, задачей измерения является не только нахождение значения физической величины, но и оценка допущенной при этом погрешности. Более того, результаты измерений объективны постольку, поскольку правильно оценены их погрешности.

Ошибки измерений делятся на три основные группы.

- 1. **Грубые ошибки или промахи.** Источниками их является недостаточное внимание экспериментатора при считывании и записи опытных данных, производстве вычислений, а также сбои в работе измерительных приборов и вычислительной техники, резкое изменение условий измерений и т. п.
- 2. Систематические (приборные, методические) ошибки. Это ошибки, регулярно повторяющиеся при повторных измерениях. Величина таких ошибок одинакова во всех измерениях, выполняющихся одним и тем же методом с помощью одних и тех же измерительных приборов. Они всегда односторонне влияют на результаты измерений: только увеличивая или только уменьшая их. Принципиально систематические ошибки всегда могут быть устранены.
- 3. Случайные (статистические) ошибки. К случайным относятся все те ошибки, которые в каждом акте измерения одной и той же величины, выполняющемся в одинаковых условиях, одними и теми же приборами, одним и тем же экспериментатором и с одинаковой тщательностью, не повторяются, изменяясь случайным образом по величине и знаку.

Исключить случайные ошибки нельзя, так как многочисленные их причины либо неясны, либо неизвестны. Вместе с тем, оценить случайные ошибки, как правило, можно, используя методы теории ошибок (погрешностей).

Теория ошибок имеет дело *только со случайными ошибками*. Выводы этой теории справедливы при достаточно большом числе повторяющихся измерений, проведенных в одних и тех же доступных контролю условиях.

Заметим, что систематическая ошибка, связанная со свойствами измерительного прибора или измеряемого объекта, часто может быть преобразована в случайную погрешность. Для этого измерения организуют таким образом, что-

бы постоянный фактор, ответственный за систематическую ошибку, в каждом измерении изменялся по величине и знаку случайным образом.

**Пример.** Измеряя длину некого предмета, можно воспользоваться не одной линейкой, а для каждого отдельного измерения линейками разных фирм. Такие линейки наверняка имеют систематические погрешности, отличающиеся по величине и знаку случайным образом.

Прием превращения систематической ошибки в случайную называется **рандономизацией.** Он позволяет практически исключить многие неизвестные систематические ошибки.

Случайные ошибки подчиняются законам теории вероятностей и математической статистики.

### Элементы теории ошибок

В основе теории ошибок лежат два предположения, подтверждаемые на опыте.

- 1. При большом числе измерений случайные ошибки (погрешности) одинаковой величины, но разного знака встречаются одинаково часто.
- 2. Большие погрешности встречаются реже, чем малые, то есть вероятность появления погрешности уменьшается с ростом величины погрешности.

В этом разделе опишем – с пояснениями, но без доказательств – основные правила обработки случайных погрешностей.

Рассмотрим ситуацию обработки прямых измерений на примере измерения массы некоторого тела.

Таблица 1.

| №   | $m_i$ (кг) $\Delta m_i$ (кг)                    |                         | $(\Delta m_i)^2$                            |  |  |
|-----|-------------------------------------------------|-------------------------|---------------------------------------------|--|--|
| 1   | $m_1$                                           | $\overline{m}-m_{_{1}}$ | $(\overline{m}-m_{_{1}})^{2}$               |  |  |
| 2   | $m_2$                                           | $\overline{m}-m_2$      | $(\overline{m}-m_2)^2$                      |  |  |
| ••• |                                                 |                         |                                             |  |  |
| n   | $m_n$                                           | $\overline{m}-m_{_{n}}$ | $(\overline{m}-m_{_{n}})^{2}$               |  |  |
|     | $\overline{m} = \frac{1}{n} \sum_{i=1}^{n} m_i$ |                         | $\sum_{i=1}^n \left(\Delta m_i^{}\right)^2$ |  |  |

В качестве наилучшего значения для измеряемой величины обычно применяют среднее арифметическое значение из всех полученных результатов:

$$\overline{m} = \frac{1}{n} \sum_{i=1}^{n} m_i,$$

где n — число измерений.

Из математической статистики следует, что этому результату (среднему арифметическому) следует приписать погрешность, определяемую формулой:

$$\Delta m = \sigma = \sqrt{\frac{\sum\limits_{i=1}^{n} (\Delta m_i)^2}{n(n-1)}}$$
.

Результат опыта записывается в виде:

$$m = (\overline{m} \pm \Delta m)$$
 кг.

Теория погрешностей говорит о том, что при небольшом числе измерений (так обычно и бывает в учебном лабораторном практикуме) «ошибка в определении ошибки примерно равна самой ошибке». Поэтому погрешность результата не столько определяют, сколько оценивают.

Оценка  $\Delta m$  подобрана таким образом, что при проведении многочисленных серий измерений погрешность в 2/3 случаев (точнее в 0,683) оказывается меньше  $\Delta m$ , а в 1/3 случаев больше, чем m. Погрешность, определенную таким образом, обычно называют стандартной или среднеквадратичной погрешностью опытов. В математической статистике среднеквадратичную погрешность обозначают греческой буквой  $\sigma$  (сигма), а квадрат этой величины называется дисперсией. Интервал значений от  $(\overline{m} - \sigma)$  до  $(\overline{m} + \sigma)$  носит название доверительного интервала.

Если пользоваться терминологией теории вероятностей, то можно сказать, что с вероятностью (надежностью)  $\alpha \approx 2/3$ , результат измерений не выходит за пределы доверительного интервала.

Погрешность измерений может быть выбрана как  $\Delta m = 2\sigma$ . В этом случае при бесконечно большом количестве опытов надежность  $\alpha = 0,954$ , или только в 5% случаев результаты опыта оказываются за пределами интервала  $\pm \Delta m$ . Если погрешность выбирается как  $3\sigma$ , то $\alpha = 0,970$  и практически невероятно, чтобы результаты измерений оказались за пределами интервала  $\pm \Delta m$ .

Если нас интересует погрешность не среднего арифметического значения  $\sigma$ , а погрешность *единичного* измерения  $\sigma_{\rm n}$ , то из математической статистики следует:

$$\sigma_n = \sqrt{\frac{\sum_{i=1}^n (\Delta m_i)^2}{n-1}}.$$

Отсюда следует практическое правило для определения промахов при обработке результатов измерений. Промахами считаются результаты измерений, оказавшиеся за пределами интервала  $\pm 3\sigma_n$ . Промахи исключаются, и результаты измерений обрабатываются заново. После вторичной обработки ре-

зультатов вновь производится проверка на промахи, и если они обнаруживаются, то результаты обрабатываются третий раз т. д., до полного исключения промахов.

Если число измерений n достаточно велико, то столбец  $\Delta m_i$  в первой таблице имеет смысл обработать так, как столбец  $\Delta f_i$  во второй таблице (см. ниже). Здесь следует суммировать отдельно  $+\Delta m_i$  и  $-\Delta m_i$ , и полученные суммы алгебраически сложить. Полученный близкий к нулю результат будет свидетельствовать о правильности произведенных измерений и безошибочном вычислении  $\overline{m}$ .

**Косвенные измерения** в нашем лабораторном практикуме будут обрабатываться как прямые измерения (см. Таблица 2.). Теория [3] говорит о том, что это допустимо, если результаты измерений не сильно отличаются от соответствующего среднего значения.

С более строгой теорией обработки косвенных измерений Вы познакомитесь в лаборатории механики. Там же Вы научитесь учитывать систематические погрешности.

### Описание установки

Структурная схема установки представлена на Рис. 1.

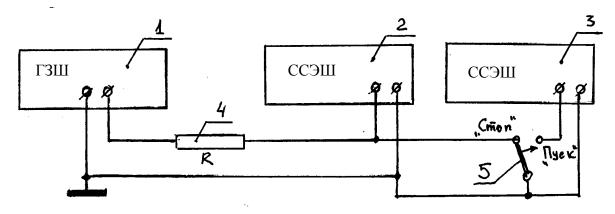



Рис. 1

В состав экспериментальной установки входят:

- 1 генератор электрических колебаний звуковой частоты;
- 2 счетчик импульсов;
- 3 секундомер;
- 4 резистор ограничительный R = 500 Om;
- 5 ключ телеграфный усовершенствованный.

Генератор 1 вырабатывает гармонические электрические колебания звуковой частоты. Частота этих колебаний f определяется с помощью счетчика импульсов и секундомера, в качестве которых используются два однотипных электронных счетчика-секундомера ССЭШ (счетчик-секундомер электронный школьный). Один из них используется в режиме счета импульсов, а второй – как секундомер. Соответствующие переключения в ССЭШ интуитивно понятны и здесь не описываются.

Счетчик импульсов 2 через ограничительный резистор 4 соединен с выходом звукового генератора 1. Ниже (в первом задании) описана процедура регулировки амплитуды выходного напряжения генератора для уверенного срабатывания счетчика импульсов. Срабатывание счетчика происходит только в положительные полупериоды выходного переменного напряжения, то есть один раз за каждый период. Счетчик имеет три пересчетные декады, и, следовательно, его емкость равна 999 импульсов.

Одновременно с включением счетчика импульсов должен включаться и секундомер 3. Точность используемого секундомера 0.01 c, а диапазон измеряемого времени 0.01 - 9.99 сек.

Управление установкой осуществляется с помощью усовершенствованного телеграфного ключа. Запускается установка нажатием на ключ, а останавливается при его отпускании. Зазор между контактами телеграфного ключа должен быть установлен минимальным; чем он меньше, тем точнее совпадает момент включения счетчика с моментом включения секундомера. Сброс показаний после каждого измерения производится вручную нажатием кнопок «Сброс» на счетчике и секундомере.

### Порядок выполнения работы

### Задание 1. Знакомство с лабораторной установкой.

Выясните назначение органов управления звукового генератора и электронного счетчика-секундомера. Назначение органов управления в этих приборах интуитивно понятно, но если возникают сомнения, то обратитесь к преполавателю.

Изучите электрическую схему установки и проверьте правильность соединения электрических цепей.

Включите установку в электросеть, при этом должны загореться контрольные лампочки на приборах. Прогрейте приборы в течение 10-20 мин. Отрегулируйте напряжение, поступающее с выхода звукового генератора на счетчик импульсов. Для этого нажмите ключ и постепенно увеличивайте выходное напряжение генератора с нуля вольт (рука регулировки выходного напряжения в крайнем левом положении) до напряжения, соответствующего устойчивому срабатыванию счетчика импульсов. При изменении частоты электрического сигнала, поступающего с генератора, скорость работы счетчика должна соответственно изменяться (проверьте!).

При нажатии на ключ, одновременно со счетчиком импульсов должен включиться секундомер. Правильность работы установки в целом можно проверить следующим способом: установите частоту генератора 100 Гц и нажмите ключ на 5 секунд (контроль времени по электронному секундомеру), при этом счетчик импульсов должен отсчитать приблизительно 500 импульсов. В дальнейшем подсчет импульсов выполняйте за такой же интервал времени (5 сек).

### Задание 2. Определение частоты звукового генератора.

Настройте генератор по его шкале на частоту, на частоту, указанную преподавателем. Запишите ее значение. Установленное значение частоты является приблизительным, так как используемые в эксперименте генераторы ГЗШ (генератор звуковой школьный) имеют крайне низкий класс точности. Отметим, что счетчик-секундомер ССЭШ (счетчик-секундомер электронный школьный) принципиально имеет весьма высокую точность измерений.

В результате этого эксперимента Вы значительно точнее определите частоту настройки звукового генератора, чем это можно сделать по его собственной шкале.

**Об** обозначениях. В физике частоту обычно обозначают греческой буквой «v» (ню). В электронике, электротехнике, радиотехнике чаще применяется буква «f». Поскольку в этой работе определяется частота переменного тока, то мы будем использовать обозначение «f».

Частота генератора  $f_{\varepsilon}$ =  $\Gamma$ ц

Таблица 2.

| №   | $N_{\mathrm{i}}$ $t_{\mathrm{i}}\left(\mathrm{c}\right)$           | $f_i = \frac{N_i}{t_i}$ (Гц) | $\Delta f_{ m i}$                       |                     | $(\Delta f_{\rm i})^2$ |                                                |
|-----|--------------------------------------------------------------------|------------------------------|-----------------------------------------|---------------------|------------------------|------------------------------------------------|
|     | -                                                                  | - ( )                        | $t_i$                                   | +                   | _                      | \ <b>V</b> =/                                  |
| 1   |                                                                    |                              |                                         |                     |                        |                                                |
| 2   |                                                                    |                              |                                         |                     |                        |                                                |
| ••• | • • • • • • • • • • • • • • • • • • • •                            |                              | • • • • • • • • • • • • • • • • • • • • | •••••               | •••••                  |                                                |
| 33  |                                                                    |                              |                                         |                     |                        |                                                |
|     | Номера измерений, оказавшихся промахами: Число промахов $\kappa =$ |                              | $\int_{C} \sum_{i=1}^{\infty} f_i$      | $+\Sigma\Delta f_i$ | $-\Sigma\Delta f_i$    | $\sum_{i=1}^{n} (A_i c_i)^2$                   |
|     |                                                                    |                              |                                         |                     |                        | $= \sum_{i=1}^{n} \left( \Delta f_i \right)^2$ |

 $N_{\rm i}$  – число импульсов, сосчитанных за время  $t_{\rm i}$ ; n – число измерений.

Таблицу обработайте в следующем порядке.

- 1. Проверьте  $\sum_{i=1}^{n} \Delta f_i = +\sum \Delta f_i \sum \Delta f_i \approx 0$ . Если сумма сильно отличается от нуля, то вариантов два: неправильно вычислено среднее значение  $\overline{f}$  или есть ошибки в вычислении отклонений от среднего арифметического  $\Delta f_i$ . Существует и третий, весьма маловероятный вариант незамеченные сбои в работе счетчиков-секундомеров ССЭШ во время проведения эксперимента. По этому поводу следует обратиться к преподавателю.
  - 2. Вычислите стандартную погрешность единичного измерения

$$\Delta f_n = \sqrt{\frac{\sum_{i=1}^n (\Delta f_i)^2}{n-1}}.$$

Проверьте результаты $\Delta f_i$  на наличие промахов. Если соответствующее значение  $\Delta f_i > 3\Delta f_n$ , то данный результат будет промахом и его следует исключить из таблицы. Подобным образом исключите все промахи, а оставшиеся результаты обработайте снова, заполняя новую итоговую (последнюю) строку таблицы. Этот процесс продолжайте до полного исключения всех промахов.

3. Вычислите стандартную погрешность среднего арифметического

$$\Delta f = \sqrt{\frac{\sum_{i=1}^{n} (\Delta f_i)^2}{n(n-1)}},$$

Окончательный результат запишите в виде:

$$f = (\overline{f} \pm \Delta f)$$
 Гц при  $\alpha \approx 2/3$ .

Оцените относительную погрешность  $\varepsilon = \frac{\Delta f}{f} 100\%$ .

### Контрольные вопросы

- 1. Какие виды ошибок измерений Вы учитывали в этой работе?
- 2. Что называют надежностью результатов измерений, и как ее увеличить?
- 3. Что такое доверительный интервал?