Далее: 8.1.2. Меры разброса данных Вверх: 8.1. Основные процедуры статистического Назад: 8.1. Основные процедуры статистического

8.1.1. Меры центральной тенденции

Рассматривая методы математической статистики, применяемые для обработки данных тестовых исследований, можно выделить группу методов которые могут описывать те или иные меры центральной тенденции. Такие меры указывают наиболее типичный результат, характеризующий выполнение теста всей группой. Самая известная из таких мер - среднеарифметическое значение (М).

Среднеарифметическое (или выборочное среднее) значение представляет собой среднюю оценку изучаемого в эксперименте психологического качества. Эта оценка характеризует степень его развития в целом у той группы испытуемых, которая была подвергнута исследованию (выборка испытуемых). Сравнивая среднее значение двух или нескольких групп, мы можем судить об относительной степени развития у людей, составляющих эти группы, оцениваемого качества$.$

Среднеарифметическое определяется по следующей формуле:

М = $\frac{\sum {X_I } }{n}$

где М - среднеарифметическое значение

n - количество испытуемых


\begin{displaymath}
\sum {X_I } \quad - \mbox{сумма всех результатов}
\end{displaymath}

Пример: В исследовании объема вербальной механической памяти, тест ``10 слов'' в группе из 12 испытуемых (n = 12), получены следующие результаты (количество запомненных слов): 5, 4, 5, 6, 7, 3, 6, 2, 8, 6, 9, 7

Среднеарифметическое значение (М) $ = \frac{5 + 4 + 5 + 6 + 7 + 3 + 6 + 2 +
8 + 6 + 9 + 7}{12} = \frac{68}{12} = 5,6$

Для данной выборки среднеарифметическое значение (М) = 5,6

Другой мерой центральной тенденции является мода (Мо) - наиболее часто встречающийся результат. В интервальном частотном распределении мода определяется как середина интервала, для которого частота максимальна.

Пример: В ряду значений 2, 3, 4, 5, 5, 6, 6, 6, 7, 7, 8, 9 модой является 6, потому, что 6 встречается чаще любого другого числа.

Обратите внимание, что мода представляет собой наиболее часто встречающееся значение (в данном примере это 6), а не частоту встречаемости этого значения (в данном примере равную 3).

Когда два соседних значения имеют одинаковую частоту и их частота больше частот любых других значений, мода вычисляется как среднее арифметическое этих двух значений.

Пример: в выборке 1, 2, 2, 2, 5, 5, 5, 6 частоты рядом расположенных значений 2 и 5 совпадают и равняются 3. Эта частота больше, чем частота других значений 1 и 6 (у которых она равна 1). Следовательно, модой этого ряда будет величина $\frac{\left( {2 + 5} \right)}{2} = 3,5$

Третья мера центральной тенденции - медиана (Ме), - результат, находящийся в середине последовательности показателей, если их расположить в порядке возрастания или убывания. Справа и слева от медианы (Ме) в упорядоченном ряду остается по одинаковому количеству данных (50% и 50%). Если ряд включает в себя четное количество признаков, то медианой (Ме) будет среднее, взятое как полусумма двух центральных значений ряда.

Пример: Найдем медиану выборки: 5, 4, 5, 6, 7, 3, 6, 2, 8, 6, 9, 7.

Упорядочим выборку: 2, 3, 4, 5, 5, 6, / 6, 6, 7, 7, 8, 9. Поскольку здесь имеется четное число элементов, то существует две ``середины'' - 6 и 6. В этом случае медиана определяется как среднее арифметическое этих значений.

Ме $ = \frac{6 + 6}{2} = 6$

Пример: Найдем медиану выборки с нечетным количеством значений: 9, 3, 5, 8, 4, 11, 13.

Сначала упорядочим выборку по величинам входящих в нее значений. Получим: 3, 4, 5, 8, 9, 11, 13. Поскольку в выборке семь элементов, четвертый по порядку элемент будет серединой ряда. Таким образом, медианой будет четвертый элемент - 8

Значения Ме и Мо полезны для того, чтобы установить является ли распределение частных значений изучаемого признака симметричным и приближающимся к нормальному распределению. Среднее арифметическое (М), медиана (Ме) и мода (Мо) для нормального распределения обычно совпадают или очень мало отличаются друг от друга. При нормальном распределении результатов график распределения имеет форму колокола (рис. 2).

\includegraphics[width=4.93in,height=2.61in]{D:/html/work/link1/metod/met125/met1252.eps}

Рис. 2. График нормального распределения результатов исследования


Далее: 8.1.2. Меры разброса данных Вверх: 8.1. Основные процедуры статистического Назад: 8.1. Основные процедуры статистического

ЯГПУ, Отдел образовательных информационных технологий
26.07.2010